Develop a ‘C’ program to create a BINARY SEARCH TREE. Write functions to perform the various traversals on the tree.

 

DATA STRUCTURE & ALGORITHM USING C – LAB (2018407)

 UNIT – 09

Develop a ‘C’ program to create a BINARY SEARCH TREE. Write functions to perform the various traversals on the tree.

#include <stdio.h>
#include <stdlib.h>
struct btnode
{
    int value;
    struct btnode *l;
    struct btnode *r;
}*root = NULL, *temp = NULL, *t2, *t1;
void delete1();
void insert();
void delete();
void inorder(struct btnode *t);
void create();
void search(struct btnode *t);
void preorder(struct btnode *t);
void postorder(struct btnode *t);
void search1(struct btnode *t,int data);
int smallest(struct btnode *t);
int largest(struct btnode *t);
int flag = 1;
void main()
{
    int ch;
    printf("\nOPERATIONS ---");
    printf("\n1 - Insert an element into tree\n");
    printf("2 - Delete an element from the tree\n");
    printf("3 - Inorder Traversal\n");
    printf("4 - Preorder Traversal\n");
    printf("5 - Postorder Traversal\n");
    printf("6 - Exit\n");
    while(1)
    {
        printf("\nEnter your choice : ");
        scanf("%d", &ch);
        switch (ch)
        {
        case 1:   
            insert();
            break;
        case 2:   
            delete();
            break;
        case 3:   
            inorder(root);
            break;
        case 4:   
            preorder(root);
            break;
        case 5:   
            postorder(root);
            break;
        case 6:   
            exit(0);
        default :    
            printf("Wrong choice, Please enter correct choice  ");
            break;   
        }
    }
}
/* To insert a node in the tree */
void insert()
{
    create();
    if (root == NULL)
        root = temp;
    else   
        search(root);   
}
/* To create a node */
void create()
{
    int data;
 
    printf("Enter data of node to be inserted : ");
    scanf("%d", &data);
    temp = (struct btnode *)malloc(1*sizeof(struct btnode));
    temp->value = data;
    temp->l = temp->r = NULL;
}
/* Function to search the appropriate position to insert the new node */
void search(struct btnode *t)
{
    if ((temp->value > t->value) && (t->r != NULL))      /* value more than root node value insert at right */
        search(t->r);
    else if ((temp->value > t->value) && (t->r == NULL))
        t->r = temp;
    else if ((temp->value < t->value) && (t->l != NULL))    /* value less than root node value insert at left */
        search(t->l);
    else if ((temp->value < t->value) && (t->l == NULL))
        t->l = temp;
}
/* recursive function to perform inorder traversal of tree */
void inorder(struct btnode *t)
{
    if (root == NULL)
    {
        printf("No elements in a tree to display");
        return;
    }
    if (t->l != NULL)   
        inorder(t->l);
    printf("%d -> ", t->value);
    if (t->r != NULL)   
        inorder(t->r);
}
/* To check for the deleted node */
void delete()
{
    int data;
 
    if (root == NULL)
    {
        printf("No elements in a tree to delete");
        return;
    }
    printf("Enter the data to be deleted : ");
    scanf("%d", &data);
    t1 = root;
    t2 = root;
    search1(root, data);
}
/* To find the preorder traversal */
void preorder(struct btnode *t)
{
    if (root == NULL)
    {
        printf("No elements in a tree to display");
        return;
    }
    printf("%d -> ", t->value);
    if (t->l != NULL)   
        preorder(t->l);
    if (t->r != NULL)   
        preorder(t->r);
}
/* To find the postorder traversal */
void postorder(struct btnode *t)
{
    if (root == NULL)
    {
        printf("No elements in a tree to display ");
        return;
    }
    if (t->l != NULL)
        postorder(t->l);
    if (t->r != NULL)
        postorder(t->r);
    printf("%d -> ", t->value);
}
/* Search for the appropriate position to insert the new node */
void search1(struct btnode *t, int data)
{
    if ((data>t->value))
    {
        t1 = t;
        search1(t->r, data);
    }
    else if ((data < t->value))
    {
        t1 = t;
        search1(t->l, data);
    }
    else if ((data==t->value))
    {
        delete1(t);
    }
}
/* To delete a node */
void delete1(struct btnode *t)
{
    int k;
 
    /* To delete leaf node */
    if ((t->l == NULL) && (t->r == NULL))
    {
        if (t1->l == t)
        {
            t1->l = NULL;
        }
        else
        {
            t1->r = NULL;
        }
        t = NULL;
        free(t);
        return;
    }
     /* To delete node having one left hand child */
    else if ((t->r == NULL))
    {
        if (t1 == t)
        {
            root = t->l;
            t1 = root;
        }
        else if (t1->l == t)
        {
            t1->l = t->l;
 
        }
        else
        {
            t1->r = t->l;
        }
        t = NULL;
        free(t);
        return;
    }
     /* To delete node having right hand child */
    else if (t->l == NULL)
    {
        if (t1 == t)
        {
            root = t->r;
            t1 = root;
        }
        else if (t1->r == t)
            t1->r = t->r;
        else
            t1->l = t->r;
        t == NULL;
        free(t);
        return;
    }
     /* To delete node having two child */
    else if ((t->l != NULL) && (t->r != NULL)) 
    {
        t2 = root;
        if (t->r != NULL)
        {
            k = smallest(t->r);
            flag = 1;
        }
        else
        {
            k =largest(t->l);
            flag = 2;
        }
        search1(root, k);
        t->value = k;
    }
 }
/* To find the smallest element in the right sub tree */
int smallest(struct btnode *t)
{
    t2 = t;
    if (t->l != NULL)
    {
        t2 = t;
        return(smallest(t->l));
    }
    else   
        return (t->value);
}
/* To find the largest element in the left sub tree */
int largest(struct btnode *t)
{
    if (t->r != NULL)
    {
        t2 = t;
        return(largest(t->r));
    }
    else   
        return(t->value);
}

Post a Comment

0 Comments